Intramolecular Alkylation of Phenols. Part 5.1 A Regiospecific Anionic Ring Closure of Phenols via Quinone Methides ${ }^{2}$

By William S. Murphy * and Sompong Wattanasin, Department of Chemistry, University College, Cork, Ireland

Abstract

The bis-magnesium salts of the triols (6a) and (6h) cyclise when heated in benzene with high ortho-regiospecificity to the corresponding bis-phenols (7) and (8). The triols (6k) and (60) under the same conditions cyclise with high para-regiospecificity to the corresponding bis-phenols (7) and (8). Both (6a) and (6h) cyclise via o-quinone methides, and (6 k) and (60) via p-quinone methides. Results from the use of, inter alia, 18-crown-6, indicate that the high ortho-regiospecificity of the cyclisation of (6a) and (6 h) is due to intramolecular Mg (II) bridging of the intermediate o-quinone methides. The high para-regiospecificity of cyclisation of (6 k) and (6 o) is due to steric hindrance towards o-cyclisation of the intermediate p-quinone methides presented by the $\mathbf{M g}(I I)$ cation. The unexpected facility with which (6a) and (6k) undergo ring closure is discussed.

The participation of an aromatic nucleus to form a fused ring system is an important tactic in organic synthesis. Many methods for cyclisation have been developed. ${ }^{3}$ However, in most of these, cationic alkylation and acylation is involved with the consequence that problems of regioselectivity are often encountered. ${ }^{4}$ The anionic counterpart, of interest to us, is limited for stereoelectronic reasons. ${ }^{1}$ Thus the ring closure of the phenols (1)-(3), for example, was not observed under basic conditions. ${ }^{1,3} \mathbf{d}$

(1)

(2)

(3)

We now report a new anionic cyclisation of phenols with high regiospecific control. The reaction is an arylbenzyl coupling and is based on the intramolecular interaction between the phenoxide and the o - (and p-) quinone methide groups [reaction (1)].

Quinone methides were chosen as likely substances for our cyclisation study because (a) the precursors are readily available, ${ }^{5}$ (b) cyclisation could be expected, with aromatisation of the quinonoid ring coupled with high reactivity ${ }^{6}$ as driving force, (c) the cyclisation would involve a permissible ${ }^{1,7} 5$ or 6 -Exo-Trig mode, and (d) the possibility that intramolecular chelation ${ }^{8}$ could lead to highly regiospecific cyclisations.

Synthesis of Starting Matcrials.-A number of alcohols were prepared as models for this study, as outlined (Scheme 1). The alcohols ($6 \mathrm{a}-\mathrm{g}, 6 \mathrm{k}-\mathrm{n}$) were prepared from the corresponding chalcones (4) as follows (Scheme 1). Hydrogenation of the chalcones over Adams
catalyst in ethyl acetate gave the corresponding dihydrochalcones in high yield. Reduction of the ketones with lithium aluminium hydride in ether at room or reflux temperature gave the alcohols ($6 \mathrm{a}-\mathrm{g}, \mathrm{k}-\mathrm{n}$) in good yield. The synthesis of the alcohols ($6 \mathrm{i}, \mathrm{j}, \mathrm{p}$, and q) was

(4)

(5)

(6)

	n	R^{1}	R^{2}
a;	1	OH	$o-\mathrm{OH}$
b;	1	OMe	$o-\mathrm{OH}$
c;	1	$\mathrm{OCH}_{2} \mathrm{Ph}$	$o-\mathrm{OH}$
d;	1	OH	o-OMe
e;	1	OMe	$o-\mathrm{OMe}$
f;	1	H	$o-\mathrm{OH}$
g;	1	OH	H
h;	2	OH	$o-\mathrm{OH}$
i;	2	$\mathrm{OCH}_{2} \mathrm{Ph}$	$o-\mathrm{OCH}_{2} \mathrm{Ph}$
j;	2	OMe	$o-\mathrm{OMe}$
k;	1	OH	p-OH
1;	1	OMe	p-OH
m;	1	OH	p-OMe
n ;	1	OMe	p OMe
o;	2	OH	p-OH
p;	2	$\mathrm{OCH}_{2} \mathrm{Ph}$	$p-\mathrm{OCH}_{2} \mathrm{Ph}$
q;	2	OMe	p-OMe

Scheme 1 Reagents: i, $\mathrm{H}_{2}-\mathrm{Pt}$; ii, $\mathrm{LiAlH}_{4}-\mathrm{Et}_{2} \mathrm{O}$; iii, $\mathrm{Mg}-\mathrm{Et}_{2} \mathrm{O}$; iv, $\mathrm{R}^{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO} ; \mathrm{v}, \mathrm{H}_{2}-\mathrm{Pd}-\mathrm{C}, \mathrm{NaOH}$
accomplished by reaction of the Grignard reagent derived from (5) with the corresponding benzaldehyde. Removal of the benzyl groups from the alcohols (6 i and p) was effected by catalytic hydrogenation with $\mathrm{Pd}-\mathrm{C}$ catalyst in the presence of sodium hydroxide, which inhibited oxygen hydrogenolysis. ${ }^{9}$ The corresponding compound (7) was also invariably formed. ${ }^{9}$

RESULTS AND DISCUSSION

Cyclisation via o-Quinone Methides.-The bisphenoxymagnesium bromide ${ }^{5}$ of the alcohol (6a) was heated under reflux in benzene for 20 h . The cyclised product, the bisphenol (7a), and the alkene (9a) were isolated in
effect cyclisation. It had been reported ${ }^{10}$ that replacement of the $\mathrm{Mg}(\mathrm{II})$ cation with alkali metals $\left(\mathrm{K}^{+}, \mathrm{Na}^{+}\right.$, Li^{+}) prevented intermolecular reaction of phenols with ketals and aldehydes. The marked effect of $\mathrm{Mg}(\mathrm{II})$ is probably due to the greater chelating ability and Lewis-

Cyclisation and attempted cyclisation reactions

						Ratio ${ }^{\text {a }}$	
Entry	Starting material	Method	Solvent	Temperature (Time/h)	Product (yield, [\%])	ortho (7)	$\begin{gathered} \text { para } \\ (8) \end{gathered}$
1	6a	2 EtMgBr	PhH	reflux (20)	$7 \mathrm{a}(71))^{\text {b }}$ 9a (11) ${ }^{\text {b }}$	100	
2	6a	2 EtMgBr , 18-crown-6 (Cat. amount)	PhH	reflux (20)	$7 \mathrm{a}(21),{ }^{\text {b }} 9 \mathrm{a}(12),{ }^{\text {b }} 19+20(25){ }^{\text {b }}$	100	
3	6a	$\begin{aligned} & \text { 2EtMgBr, } \\ & 218 \text {-crown- } 6 \end{aligned}$	PhH	reflux (20)	$9 \mathrm{a}(66){ }^{\text {b }} 19+20(6)^{b}$		
4	6a	2 NaH	PhH	reflux (20)	6a (75) ${ }^{\text {b }}$		
5	6a	$2 \mathrm{Bu}^{\mathrm{L}} \mathrm{Li}$	PhH	reflux (20)	6a (80) ${ }^{\text {b }}$		
6	6a	2 NaH 2 18-crown-6	PhH	reflux (20)	6a (82), ${ }^{\text {b }} 9 \mathrm{a}(<5)^{\text {b }}$		
7	6a	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ambient (1.5)	$7 \mathrm{a}+8 \mathrm{a}(72)^{6}$	5	95
8	6 b	2EtMgBt	PhH	reflux (20)	6 b (93) ${ }^{\text {c }}$		
9	6b	5 EtMgBr	PhH	reflux (20)	6b (85) ${ }^{\text {b }}$		
10	6b	20 EtMgBr	PhH	reflux (20)	$6 \mathrm{~b}(85)^{6}$		
11	6b	$\begin{aligned} & 2 \mathrm{EtMgBr} \\ & \text { ethyl vinyl ether } \end{aligned}$	PhH	reflux (20)	$6 \mathrm{~b}(95){ }^{\text {c }}$		
12	6 c	2 EtMgBr	PhH	reflux (20)	6c (94) ${ }^{\text {c }}$		
13	6c	5 EtMgBr	PhH	reflux (20)	6c (90) ${ }^{\text {c }}$		
14	6c	2 EtMgBr ethyl vinyl ether	PhH	reflux (20)	$6 \mathrm{c}(73){ }^{\text {c }}$		
15	6 d	2 EtMgBr	PhH	reflux (20)	6d (94) ${ }^{\text {c }}$		
16	Ge	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ambient (1.5)	$7 \mathrm{~b}+8 \mathrm{~b}(76)^{6}$	10	90
17	$6 f$	2 EtMgBr , ethyl vinyl ether	PhH	reflux (20)	$18(55){ }^{\text {b }}$		
18	6 g	2 EtMgBr	PhH	reflux (20)	$6 \mathrm{~g}(96)^{\text {c }}$		
19	6 h	${ }_{2} \mathrm{EtMgBr}$	PhH	reflux (20)	$7 \mathrm{c}+8 \mathrm{c}(90)^{\text {b }}$	12	88
20	6 h	$\begin{aligned} & 2 \mathrm{EtMgBr}, \\ & 218 \text {-crown- } 6 \end{aligned}$	PhH	reflux (20)	$7 \mathrm{c}+8 \mathrm{c}(90){ }^{6}$	38	62
21	6 j	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ambient (1.5)	$7 \mathrm{~d}+8 \mathrm{~d}(70)^{6}$	5	95
22	6 k	2 EtMgBr	PhH	reflux (20)	$7 \mathrm{e}+8 \mathrm{e}(43))^{\text {b }} 9 \mathrm{e}(2){ }^{6}$	10	90
23	6 k	2 EtMgBr	PhH	reflux (20)	$7 \mathrm{e}+8 \mathrm{e}(31){ }^{\text {b }} 9 \mathrm{e} \mathrm{e}^{(12)}{ }^{\text {b }}$	12	88
24	6k	$\begin{aligned} & 2 \mathrm{EtMgBr} \\ & 218 \text {-crown- } \end{aligned}$	PhH	reflux (20)	$6 \mathrm{k}(25),{ }^{6} 9 \mathrm{e}(46)^{\text {b }}$		
25	6k	```2NaH, 2 18-crown-6```	PhH	reflux (20)	$6 \mathrm{k}(17),^{d} 9 \mathrm{e}(70)^{d}$		
26	6 k	2.6 NaH	PhH	reflux (20)	$6 \mathrm{k}(31){ }^{\boldsymbol{d}} 9 \mathrm{e}(61){ }^{d}$		
27	6 k	2 NaOMe	PhH	reflux (20)	$6 \mathrm{k}(80)^{\text {b }}$		
28	61	${ }_{2}^{2} \mathrm{EtMgBr}$	PhH	reflux (20)	$9 \mathrm{~g}(84)^{\text {b }}{ }^{\text {a }}$		
29	6 m	2 EtMgBr	PhH	reflux (20)	$6 \mathrm{~m}(92){ }^{\text {d }}$		
30	6 n	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ambient (1)	$7 \mathrm{f}+8 \mathrm{f}(71)^{\text {b }}$	15	85
31	60	2 EtMgBr	PhH	reflux (20)	$7 \mathrm{~g}+8 \mathrm{~g}(90)^{\text {b }}$	7	93
32	60	$\begin{aligned} & 2 \mathrm{EtMgBr}, \\ & 218 \text {-crown- } 6 \end{aligned}$	PhH	reflux (20)	$7 \mathrm{~g}+8 \mathrm{~g}(83)^{\text {b }}$	40	60
33	${ }_{6}^{69}$	SnCl_{4}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	ambient (1.5)	$7 \mathrm{~h}+8 \mathrm{~h}(71)^{\text {b }}$	10	90
34	9 a	2 EtMgBr	Pl H	reflux (20)	$9 \mathrm{aa}(90){ }^{\text {b }}$		

a Determined by g.1.c. of the puritied dimethyl ethers using a 2 ml column of $2 \frac{1}{2} \%$ CEMS on Chromosorb G programmed at $150-200{ }^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield (preparative t.1.c.). ${ }^{c}$ Crude product yield. ${ }^{d}$ Determined from n.m.r. of the crude product.

71 and 11% yield respectively. The cyclised product was shown to be exclusively the ortho-isomer (7a) by comparison (n.m.r. and g.l.c.), after methylation to (7b), with an authentic sample prepared by SnCl_{4}-catalysed cyclisation of the alcohol (6 e) where a mixture of (7 b) and (8 b) was formed in the ratio $1: 9$.

A mechanism involving attack of phenoxide on the o-quinone methide group (see Scheme 2) was supported by the following results. (a) No cyclisation occurred when either the alcohols ($6 \mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{f}$, or g) or the alkenc (9a) were treated under the same conditions as for (6a). Unchanged starting materials only were recovered in each case. (b) Other bases, e.g. NaH or $\mathrm{Bu}^{\mathrm{r}} \mathrm{Li}$, did not
acid character of magnesium which permit the formation of the complex (10) and facilitate the reaction of it to the quinone methide complex (11) (Scheme 2). (c) Trapping experiments with ethyl vinyl ether ${ }^{11}$ were effective. Attempts to trap an o-quinone methide (16) analogous to (11; $n=1$) generated from the alcohols (6b) or (6c) (see Scheme 3) by means of an excess of ethylmagnesium bromide or ethyl vinyl ether were unsuccessful, mainly starting materials being recovered. In addition, the alcohol (6 b), as noted above in paragraph (a) (Entry 8, Table), was recovered when subjected to standard conditions. We reasoned that the alkoxygroups (OMe) in (6 b) and $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$ in (6 c) complexed
with magnesium to form a bridged intermediate (16, Scheme 3) analogous to (11; $n=1$) and that this bridge sterically hindered cycloaddition to ethyl vinyl ether. Consistent with this is the finding that when the alcohol (6f) was heated under the same conditions with

(7)

	n	$\mathrm{R}^{\mathbf{1}}$	$\mathrm{R}^{\mathbf{2}}$
$\mathrm{a} ;$	1	H	$o-\mathrm{OH}$
$\mathrm{b} ;$	$\mathbf{1}$	Me	$o-\mathrm{OMe}$
$\mathrm{c} ;$	2	H	$o-\mathrm{OH}$
$\mathrm{d} ;$	2	Me	$o-\mathrm{OMe}$
$\mathrm{e} ;$	1	H	$p-\mathrm{OH}$
$\mathrm{f} ;$	1	Me	$p-\mathrm{OMe}$
$\mathrm{g} ;$	$\mathbf{2}$	H	$p-\mathrm{OH}$
$\mathrm{h} ;$	2	Me	$p-\mathrm{OMe}$

ethyl vinyl ether, the 2-ethoxychroman (18) was isolated (55%). No starting alcohol was detected (t.l.c.). The recovery of both (6 b) and (6c) from a reaction performed under the same conditions as those in which (6 f) forms a quinone methide, strongly indicates that the reaction $(6) \rightarrow(16)$ (Scheme 3) is reversible. It appears that $M g(\mathrm{II})$ bridging of the two aryl groups as in (11; $n=1$) and (16) is a requirement for reversibility, since (61) (see below and Scheme 3) under standard conditions is not recovered. Instead the alkene $(9 \mathrm{~g})$ is formed. (d) Crown ether affected the reaction. Although the regiospecificity of the cyclisation did not change when the alcohol ($6 \mathbf{a}$) was treated under standard conditions in the presence of a catalytic amount of 18 -crown-6, the yield decreased. Thus (7a) was isolated (21%) along with the alkene ($9 \mathrm{a}, 12 \%$) and the dimers provisionally assigned the structures (19) and (20) (25%).

The reaction of (6 a) was then carried out in the presence of 2 mol of 18 -crown- 6 when the alkene (9 a) was isolated (66%). No cyclisation products were formed. However, when the bis-sodium salt of (6a) was treated

(9)

	n	R^{1}	R^{2}
$\mathrm{a} ;$	1	H	$o-\mathrm{OH}$
$\mathrm{b} ;$	1	Me	$o-\mathrm{OMe}$
$\mathrm{c} ;$	2	H	$o-\mathrm{OH}$
$\mathrm{d} ;$	2	Me	$o-\mathrm{OMe}$
$\mathrm{e} ;$	1	H	$p-\mathrm{OH}$
$\mathrm{f} ;$	1	Me	$p-\mathrm{OMe}$
$\mathrm{g} ;$	1	Me	$p-\mathrm{OH}$

under the same conditions, in the presence of 18 -crown- 6 and in the absence of $\mathrm{Mg}(\mathrm{II})$, only trace quantities of (9a) were formed and the alcohol (6a) was recovered in high yicld.

These results are consistent with the following scheme.

Cyclisation of (6a) requires magnesium chelation of the intermediate o-quinone methide ($11 ; n=1$) to increase both the nucleophilicity of the phenol and the electrophilicity of the o-quinone methide group. In addition, formation of this complex favours the entropy of cyclisation. Cyclisation will be inhibited by the crown ether because although the complex ($10 ; n=1$) (Scheme 2) must be of at least comparable stability to the 18 -crown-$6-\mathrm{Mg}$ (II) complex, ${ }^{12}$ the reverse must be the case with the o-quinone methide complex ($11 ; n=1$). This complex (11; $n=1$) once formed dissociates to (12; $n=1$) in the presence of the crown ether. Cyclisation of

(13)
(14)

(15)

Scheme 2
(12; $n=1$) will now be retarded by the absence of $\mathrm{Mg}(\mathrm{II})$ chelation. Instead the alkene (9a) is formed by intermolecular proton abstraction by the phenoxide group ${ }^{13}$ of a second molecule, the reactivity of which is enhanced by the crown ether.

Although magnesium bridging within the o-quinone methide complex ($11 ; n=1$) should favour the entropy of cyclisation it is not a necessity. Thus the p-quinone methide (14; $n=1$) cyclises (see below and Scheme 2) even though magnesium bridging is not possible. However, it may be, although we have no evidence for it at present, that the o-quinone methide complex (ll; $n=1$)
cyclises faster than the p-quinone methide complex (14; $n=1$).

The homologue (6 h) also cyclised under standard conditions. A mixture of (7c) and (8c) in the ratio $88: 12$ was formed (90%). Formation of an o-quinone methide complex ($11 ; n=2$), albeit less stable than
sented by the chelated phenyl substituent ortho to the point of ring closure. This ratio also disproves an $S_{\mathrm{N}} 2$-like $\left(\mathrm{Ar}_{2}{ }^{-}-5\right)$ mechanism for the cyclisation of (6a) and (6 k) in which a concerted displacement by the phenoxide of the benzylic hydroxy-group (21) could occur without involvement of a quinone methide.

Scheme 3
(11; $n=1$), was again indicated by the product ratio. This cyclisation contrasts with the SnCl_{4}-catalysed cyclisation of the alcohol (6 j) where a mixture of (7 d) and (8 d) was formed (70%) in the ratio $5: 95$ respect-

(18)

(19)

(20)
ively. In the presence of 18 -crown- $6,(6 h)$ cyclised (90%) to a mixture of $(7 \mathrm{c})$ and $(8 \mathrm{c})$ in the ratio $38: 62$ respectively. None of the alkene (9 c) was observed. These results are consistent with (a) the mechanism outlined in Scheme 2 and (b) the greater ease of six-membered than five-membered ring formation. ${ }^{3 b}$

Cyclisation via p-Quinone Methides.-The alcohol (6 k) cyclised (43%) to give a mixture of (7e) and (8e) in the ratio $1: 9$ together with the alkene (9 e) (2%). We consider that this ratio is due to steric hindrance pre-

Predominance of the ortho-cyclised product would be predicted. This is not however observed. In contrast, the SnCl_{4}-catalysed cyclisation of (6 h) gave (7 f) and (8 f) in the ratio $15: 85$. The mechanism for the cyclisation of (6 k) is as shown in Scheme 2 wherein magnesium chelation between the phenolic and alcoholic oxygen atoms ($13 ; n=1$) assists departure of the latter hydr-oxy-group, to generate the non-bridged p-quinone methide (14 ; $n=1$).

In addition, the following observations were made. (a) In the reaction of (6 k) the yields and ratio of (7e) and (8 e) and the yield of alkene (9 c) were sensitive to the reaction conditions (see Tablc). (b) Treatment of the alcohol (61), from which formation of the p-quinone methide complex (17) (see Scheme 3) is possible, gave under standard conditions, the alkene (9 g) (84%). No cyclised product was observed. (c) The alcohol (6 m), which cannot form a quinone methide, was recovered unchanged when treated under standard conditions. (d)

(21)

When NaH and NaOMe were used in place of $\mathrm{EtMgBr},{ }^{9}$ no cyclisation occurred. (e) In the presence of 2 mol of 18-crown-6, no cyclisation of $(6 \mathrm{k})$ occurred and the alkene (9 e) was obtained (46%). This result disproved the intramolecular mechanism, involving (22), for the formation of (9a) from the alcohol (6a).

Ring closure was also observed in the case of (60)
(Table). G.l.c., after methylation, showed that the cyclised product consisted of $(7 \mathrm{~g})$ and $(8 \mathrm{~g})$ in the ratio $7: 93$. In contrast, SnCl_{4}-catalysed cyclisation of (6 q) gave (7 h) and (8 h) in the ratio $1: 9(71 \%)$.

The ratio of $(7 \mathrm{~g})$ to $(8 \mathrm{~g})$, just as in the case of $(6 \mathrm{k})$, seems to be another example of the effect of steric hindrance. Thus in the presence of 2 mol of 18 -crown6 , the alcohol (6 o) cyclised to give (7 g) and (8 g) (83%) in the ratio 2 : 3 respectively.

Although cyclisation of the alcohols (6h) and (6o) was expected, cyclisation of the lower homologues (6a) and

(22)
(6k) was not. Molecular models indicate that if in-line attack ${ }^{7}$ by the phenoxide ring on the quinone methide group coupled with overlap by the phenoxide ring ${ }^{36,14}$ are requirements ${ }^{1}$ for reaction, then a highly strained transition state would be involved even though the cyclisations constitute the favoured 5 -Exo-Trig ${ }^{7}$ ring closure. However, these stereoelectronic requirements may not be necessary, for two reasons. First, the inherent reactivity of quinone methides ${ }^{6}$ suggests instead the involvement of an early transition state. Secondly, a planar transition state is suggested on the following basis. It was noted that neither (6a) nor (6 k) cyclise unless the respective quinone methide is coordinated to $\mathrm{Mg}(\mathrm{II})$. The effect of $\mathrm{Mg}(\mathrm{II})$ could be to induce strong cationic character in the quinone methide, e.g. (23), leading effectively to an anionic-cationic ring

(23)
closure. Since there is evidence that cationic aromatic ring closures have, on occasion, ${ }^{7}$ planar transition states, e.g. the acid-catalysed cyclisation of phenanthrene-4carboxylic acid ${ }^{15}$ which has no alternative, it is possible that a planar transition state may also prevail in the course of cyclisation of (6 a) and (6 k). In addition, this theory offers an explanation for the reluctance of the phenol (1) ${ }^{3 d}$ to cyclise under basic conditions.

It is evident that the steric requirements for phenoxide cyclisations are still unclear. They have been discussed elsewhere. ${ }^{1}$

EXPERIMENTAL

M.p.s were determined on a Thomas-Hoover meltingpoint apparatus. T.l.c. was carried out on plates coated with silica gel HF_{254} (Merck). Preparative layer chromatography on plates coated with Kiesel gel PF_{254} (Merck) were employed. G.l.c. was performed on a Perkin-Elmer

F 11 chromatograph coupled to a Perkin-Elmer 159 recorder. I.r. spectra were determined as liquid films or KBr discs with a Perkin-Elmer 257 spectrometer. ${ }^{1} \mathrm{H}$ N.m.r. spectra, unless otherwise stated, were determined for solutions in deuteriochloroform with tetramethylsilane as internal standard on a Perkin-Elmer R20A spectrometer. Benzene was distilled from calcium hydride under nitrogen. Ether was distilled from lithium aluminium hydride. Methanol was dried by distillation from magnesium methoxide. Light petroleum refers to that fraction of boiling range $40-60^{\circ} \mathrm{C}$.

1-(2-Hydroxyphenyl)-3-(3-hydroxyphenyl)propan-1-ol
(6a).-To a solution of o-hydroxyacetophenone (3.78 g , $0.03 \mathrm{~mol})$ and m-hydroxybenzaldehyde ($3.76 \mathrm{~g}, 0.03 \mathrm{~mol}$) in ethanol ($95 \%, 40 \mathrm{ml}$) was added aqueous potassium hydroxide ($3.8 \mathrm{~g}, 0.07 \mathrm{~mol}$, in 20 ml water). The reaction mixture was stirred for 12 h at room temperature. The cooled mixture was acidified with aqueous hydrochloric acid (10%). The resulting precipitate was recrystallised from aqueous ethanol to give a first crop of $2^{\prime}, 3$-dihydroxychalcone (4 ; $\left.\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=2-\mathrm{OH}\right)(4.4 \mathrm{~g})$, m.p. $150-153{ }^{\circ} \mathrm{C}$ (lit., ${ }^{16}$ $132{ }^{\circ} \mathrm{C}$) (Found: C, 74.9; H, 5.4. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$: C, $75.0 ; \mathrm{H}, 5.0 \%) ; \nu_{\max .} 3390,1635$, and $970 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2^{-}}\right.$ $\mathrm{CO}] 6.80-8.15(\mathrm{~m})$.

To a solution of the chalcone ($\left.4 ; \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=2-\mathrm{OH}\right)$ $(3.2 \mathrm{~g})$ in ethyl acetate (75 ml) was added Adams catalyst $(310 \mathrm{mg})$ and the reaction mixture was shaken under hydrogen ($40 \mathrm{lbf}_{\mathrm{in}}{ }^{-2}$) for 5 min at room temperature. The mixture was filtered and the solid was washed with more ethyl acetate. Removal of the solvent in vacuo gave $2^{\prime}, 3-$ dihydroxy- α-dihydrochalcone ($3 \mathrm{~g}, 93 \%$), m.p. $106-108{ }^{\circ} \mathrm{C}$ (from ether-hexane) (Found: C, 74.3; H, 5.9. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 5.8 \%$); $\nu_{\text {max. }} 3350$ and $1670 \mathrm{~cm}^{-1}$; $\delta 2.80-3.51\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$ and $6.65-7.80(8 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$. Use of longer reaction times produced many products.
To a solution of the above dihydrochalcone (370 mg) in ether (20 ml) was added lithium aluminium hydride (400 mg) and the reaction mixture was heated at reflux 30 h under nitrogen. The cooled mixture was quenched by the slow addition of water, acidified with aqueous hydrochloric acid (10%), and the ether layer was separated. The aqueous layer was extracted with ether, and the combined organic layers were washed with brine and dried (magnesium sulphate). Removal of the solvent in vacuo gave a colourless oil. Preparative t.l.c. (ether-light petroleum, 2:3) gave the alcohol (6a) ($347 \mathrm{mg}, 98 \%$), m.p. $117-119{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 73.7 ; \mathrm{H}, 6.5 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.8 ; \mathrm{H}$, $6.6 \%)$; $\nu_{\text {max }} 3300$ and $1590 \mathrm{~cm}^{-1} ; ~ \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 1.90-2.41$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.70\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, aliphatic OH , exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.90(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\mathrm{CH}), 6.65-7.40(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArOH}$ exchanged with $\mathrm{D}_{2} \mathrm{O}$), and $8.68(1 \mathrm{H}$, br s, ArOH , exchanged with $\mathrm{D}_{2} \mathrm{O}$).

1-(2-Hydroxyphenyl)-3-(3-methoxyphenyl) propan-1-ol
(6b).-To a solution of the chalcone ($4 ; \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=2$ $\mathrm{OH})(1 \mathrm{~g}, 4.16 \mathrm{mmol})$ in acetone $(20 \mathrm{ml})$ was added potassium carbonate ($0.6 \mathrm{~g}, 4.34 \mathrm{mmol}$) and methyl iodide (1 ml). The reaction mixture was heated at reflux for 5 h . The acetone was removed in vacuo and the residue was diluted with water, acidified with aqueous hydrochloric acid (10%), and extracted with dichloromethane. The extracts were washed with water and dried (sodium sulphate). Removal of the solvent in vacuo gave an oil which was purified by preparative t.l.c. (ether-light petroleum, 2:3) to give 2^{\prime}
hydroxy-3-methoxychalcone (4; $\mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=2-\mathrm{OH}$) ($900 \mathrm{mg}, 86 \%$), m.p. $85-87^{\circ} \mathrm{C}$ (lit.,$^{17} 94-95{ }^{\circ} \mathrm{C}$) (Found: C, 75.7; H, 5.6. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 75.6; H, 5.5%); $v_{\text {max. }}$ 3000 and $1640 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $6.81-7.90(10 \mathrm{H}, \mathrm{m})$.

To a solution of the chalcone ($4 ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=2-\mathrm{OH}$) $(340 \mathrm{mg})$ in ethyl acetate (10 ml) was added Adams catalyst $(30 \mathrm{mg})$ and the reaction mixture was shaken under hydrogen ($40 \mathrm{lbf} \mathrm{in}^{-2}$) for 5 min at room temperature. The mixture was filtered and the solid was washed with more ethyl acetate. Removal of the solvent in vacuo gave 2^{\prime} -hydroxy-3-methoxy- $\alpha \beta$-dihydrochalcone ($330 \mathrm{mg} .96 \%$); $v_{\max }$ 3000 and $1640 \mathrm{~cm}^{-1}$; $\delta 3.20\left(4 \mathrm{H}\right.$, symmetrical $\mathrm{m}, \mathrm{ArCH}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{CO}$), $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.70-7.91(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

To a solution of the above dihydrochalcone (261 mg) in ether (15 ml) was added lithium aluminium hydride (300 mg) and the reaction mixture was heated at reflux for 24 h under nitrogen. The cooled mixture was quenched by the slow addition of water, acidified with aqueous hydrochloric acid (10%), and the ether layer separated. The aqueous layer was extracted with ether. The combined ether extracts were washed with brine and dried (magnesium sulphate). Removal of the solvent in vacuo gave a colourless oil which was purified by preparative t.l.c. (ether-light petroleum, 2:3) to afford the alcohol (6 b) ($216 \mathrm{mg}, 82 \%$) (Found: C, 74.5; H, 7.0. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4$; $\mathrm{H}, 7.0 \%)$; $\nu_{\text {max }} 3300$ and $1580 \mathrm{~cm}^{-1} ; \delta 2.21(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.70\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.71(1 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH})$, and $6.60-7.51(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

3-(3-Benzyloxyphenyl)-1-(2-hydroxyphenyl)propan-1-ol (6c).-To a solution of the chalcone ($4 ; \mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=2$ $\mathrm{OH})(540 \mathrm{mg}, 2.25 \mathrm{mmol}$) in ethanol (20 ml) was added potassium carbonate ($320 \mathrm{mg}, 2.32 \mathrm{mmol}$) and benzyl chloride ($285 \mathrm{mg}, 2.25 \mathrm{mmol}$). The reaction mixture was heated at reflux for 12 h . The alcohol was removed in vacuo and the residue was diluted with water and acidified with aqueous hydrochloric acid (10%). The aqueous phase was extracted with dichloromethane and the combined organic layers were washed with water and dried (magnesium sulphate). Removal of the solvent in vacuo gave an oil which was hydrogenated as above to give a colourless oil. Purification of the crude oil by preparative t.l.c. (ether-light petroleum, 2:3) gave 2^{\prime}-hydroxy-3-benzyloxy$\alpha \beta$-dihydrochalcone ($510 \mathrm{mg}, 68 \%$); $\nu_{\text {max. }} 3000$ and 1640 $\mathrm{cm}^{-1} ; \delta 3.22\left(4 \mathrm{H}\right.$, symmetrical m, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 5.11$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right)$, and $6.78-7.61(13 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reduction of the above dihydrochalcone (420 mg) in ether (40 ml) with lithium aluminium hydride (500 mg) at reflux (25 h) as above gave a colourless oil of the alcohol (6c) ($420 \mathrm{mg}, 99 \%$) (Found: C, 79.1; H, 6.5. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 79.0 ; \mathrm{H}, 6.6 \%$); $\nu_{\text {max. }} 3200$ and $1580 \mathrm{~cm}^{-1}$; $\delta 2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.80(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right)$, and $6.81-7.60(13 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
3-(3-Hydroxyphenyl)-1-(2-methoxyphenyl)propan-1-ol (6d).-To a solution of o-methoxyacetophenone (4.3 g, 0.03 mol) and m-hydroxybenzaldehyde ($3.76 \mathrm{~g}, 0.03 \mathrm{~mol}$) in ethanol ($95 \%, 30 \mathrm{ml}$) was added aqueous potassium hydroxide $[1.8 \mathrm{~g}, 0.032 \mathrm{~mol}$, in water $(10 \mathrm{ml})]$. The mixture was heated at $80^{\circ} \mathrm{C}$ for h and allowed to stir at room temperature for 2 d . The cooled mixture was acidified with aqueous hydrochtoric acid (10%) and the yellow gummy oil (6 g) was separated. Catalytic hydrogenation of the crude oil (3 g) in ethyl acetate (10 ml) containing Adams catalyst $(250 \mathrm{mg})$ as above followed by preparative t.l.c. (ether-light petroleum, 2:3) gave 2^{\prime}-methoxy- 3 -hydroxy- $\alpha \beta$-dihydrochal-
cone $(1.88 \mathrm{~g}) ; \nu_{\text {max. }} 3400$ and $1660 \mathrm{~cm}^{-1} ; \delta 3.12(4 \mathrm{H}$, symmetrical m, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$ and $6.70-7.95(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reduction of the above dihydrochalcone (700 mg) in ether (15 ml) with lithium aluminium hydride (500 mg) at reflux (6 h) as above gave a colourless oil. Purification by preparative t.l.c. (ether-light petroleum, $2: 3$) afforded the alcohol (6d) ($605 \mathrm{mg}, 86 \%$) (Found: C, 74.3; H, 7.0. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 7.0 \%$) ; $\nu_{\text {max. }} 3300$ and 1580 $\mathrm{cm}^{-1} ; \delta 2.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.80$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$) and 6.60-7.50 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

1-(2-Methoxyphenyl)-3-(3-methoxyphenyl)propan-1-ol
(6e).-To a solution of the chalcone $\left(4 ; \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=2\right.$ $\mathrm{OH})(500 \mathrm{mg}, 2.08 \mathrm{mmol})$ in acetone (10 mll) was added potassium carbonate ($600 \mathrm{mg}, 4.34 \mathrm{mmol}$) and methyl iodide (2 ml). The reaction mixture was heated at reflux for 6 h . Work-up as above gave an oil which was purified by preparative t.l.c. (ether-light petroleum, 2:3) to give two bands. The band of higher R_{F} afforded the chalcone (4; $\mathrm{R}^{1}=\mathrm{OMe} ; \mathrm{R}^{2}=2-\mathrm{OH}$) ($121 \mathrm{mg}, 23 \%$), identical (i.r., n.m.r., and t.l.c.) with the previously prepared specimen. The band of lower R_{F} gave $2^{\prime}, 3$-dimethoxychalcone ($4 ; \mathrm{R}^{1}=\mathrm{OMe}, \mathrm{R}^{2}=2$-OMe) ($361 \mathrm{mg}, 65 \%$) (Found: C, $76.0 ; \mathrm{H}, ~ 5.9 . \quad \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}, 6.0 \%$); $\nu_{\text {max. }} 1640 \mathrm{~cm}^{-1}$; $\delta 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and 6.80-7.91 ($10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and ArH). Use of longer reaction time $(20 \mathrm{~h})$ gave only dimethylated product.

Catalytic hydrogenation of the chalcone (4; $\mathrm{R}^{1}=\mathrm{OMe}$, $\mathrm{R}^{2}=2-\mathrm{OMe}$) (350 mg) in ethyl acetate (5 ml) containing Adams catalyst (30 mg) as above (5 m) gave a colourless oil by the usual work-up. Preparative t.l.c. (ether-light petroleum, 2:3) afforded $2^{\prime}, 3$-dimethoxy- $\alpha \beta$-dihydrochalcone ($316 \mathrm{mg}, 90 \%$); $\nu_{\max } 1670 \mathrm{~cm}^{-1}$; $\delta 2.90-3.50(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.71-7.90(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reduction of the above dilydrochalcone (300 mg) in ether (15 ml) with lithium aluminium hydride $(250 \mathrm{mg})$ at reflux (6 h) gave a colourless oil by usual work-up. Preparative t.l.c. (ether-light petroleum, 2:3) gave the alcohol (6e) ($290 \mathrm{mg}, \mathbf{9 6 \%}$) (Found: C, 75.1; H, 7.3. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 7.4 \%$); $\nu_{\text {max. }} 3320$ and $1580 \mathrm{~cm}^{-1}$; $\delta 1.90-2.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), $2.65-3.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.75(6 \mathrm{H}, \mathrm{s}, 2 \times$ OMe), $4.95(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH})$, and $6.60-7.51(8 \mathrm{H}, \mathrm{m}$, ArH)

1-(2-Hydroxyphenyl)-3-phenylpropan-1-ol (6f).-Wimilar condensation of o-hydroxyacetophenone ($3.78 \mathrm{~g}, 0.028 \mathrm{~mol}$) and benzaldehyde ($2.97 \mathrm{~g}, 0.028 \mathrm{~mol}$) in ethanol $(95 \%, 40$ $\mathrm{ml})$ with aqueous potassium hydroxide $[3.14 \mathrm{~g}, 0.056 \mathrm{~mol}$, in water (20 mll)] at room temperature for 10 h gave a pale yellow solid by usual work-up. Recrystallisation from ethanol (95%) gave pale yellow crystals of 2^{\prime}-hydroxychatcone ($\left.4 ; \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=2-\mathrm{OH}\right)^{18}(3.6 \mathrm{~g}, 57 \%)$, m.p. $86-87{ }^{\circ} \mathrm{C}$ (Found: C, 80.3; H, 5.3. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $80.4 ; \mathrm{H}, 5.4 \%)$; $\nu_{\text {max. }} 3300$ and $1635 \mathrm{~cm}^{-1} ; \delta 6.71-8.10$ (m).

Catalytic hydrogenation of the above chalcone (800 mg) in ethyl acetate (30 ml) containing Adams catalyst (70 mg) as above (10 min) gave a colourless oil of the corresponding dihydrochalcone (only one spot as indicated by t.l.c.) $(801 \mathrm{mg})$ by usual work-up. Reduction of the crude ketone (600 mg) in ether (40 ml) with lithium aluminium hydride $(600 \mathrm{mg})$ at reflux for 17 h , followed by preparative t.l.c. (ether-light petroleum, 2:3) of the crude product gave a colourless oil of the alcohol (6 f) ($566 \mathrm{mg}, \mathbf{9 4 \%}$) (Found: C,
78.9; $\mathrm{H}, 7.0 . \quad \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}_{\tau} 79.0 ; \mathrm{H}, 7.0 \%$); $\nu_{\max .} 3200$ and $1580 \mathrm{cml}^{-1} ; \delta 2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.74(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2}\right), 4.79(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and $6.80-7.59(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

3-(3-Hydroxyphenyl)-1-phenylpropan-1-ol (6g).-To a solu tion of acetophenone ($3 \mathrm{~g}, 0.027 \mathrm{~mol}$) and m-hydroxybenzaldehyde ($3.3 \mathrm{~g}, 0.027 \mathrm{~mol}$) in ethanol ($95 \%, 20 \mathrm{ml}$) was added aqueous potassium hydroxide $[(3.1 \mathrm{~g}, 0.055$ mol, in water $(10 \mathrm{ml})$] and the reaction mixture was stirred for 12 h at room temperature. Isolation as above gave a yellow solid which was recrystallised from ethanol (95%) to give yellow crystals of 3 -hydroxychalcone $\left(4 ; \mathrm{R}^{1}=\mathrm{OH}\right.$, $\left.\mathrm{R}^{2}=\mathrm{H}\right)\left(3.9 \mathrm{~g}, 65 \%\right.$), m.p. $156-158{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19} 161-163{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 80.3$; $\mathrm{H}, 5.4$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{2}: \mathrm{C}, 80.4 ; \mathrm{H}$, $5.4 \%) ; \nu_{\text {max. }} 3350$ and $1660 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 6.90-8.31$ (m).

Catalytic hydrogenation of the above chalcone (818 mg) in ethyl acetate (15 ml) containing Adams catalyst (80 mg) as above (15 min) gave a colourless oil of 3 -hydroxy- $\alpha \beta-$ dihydrochalcone $(808 \mathrm{mg}, 98 \%)$; $\nu_{\text {max. }} 3300$ and 1680 cm^{-1}; $\delta 3.15\left(4 \mathrm{H}\right.$, symmetrical m , $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right)$ and 6.60-7.41 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Reduction of the above dihydrochalcone (700 mg) in ether (20 ml) with lithium aluminium hydride $(700 \mathrm{mg})$ at reflux for 1.5 h gave a colourless oil by usual work-up. Preparative t.l.c. (ether-light petroleum, 2:3) afforded a white solid of the alcohol $(6 \mathrm{~g})(590 \mathrm{mg}, 84 \%)$, m.p. $81-82^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 79.0 ; \mathrm{H}, 7.2$. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.0 ; \mathrm{H}$, $7.0 \%)$; $\nu_{\text {max. }} 3300$ and $1585 \mathrm{~cm}^{-1} ; \delta 2.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and $6.60-7.41$ ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The Bromides (5; $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}, \mathrm{OH}$, and OMe).-To a suspension of lithium aluminium hydride ($3 \mathrm{~g}, 0.075 \mathrm{~mol}$) in ether (100 ml) was added a solution of ethyl $3^{\prime}-(m$ benzyloxyphenyl)propionate ${ }^{3 d}(15.6 \mathrm{~g}, 0.055 \mathrm{~mol})$ in ether $(50 \mathrm{ml})$ dropwise $(1.5 \mathrm{~h})$ with stirring. After the addition was complete, the reaction mixture was heated at reflux for 1 h and the cooled mixture was quenched by the slow addition of water. The ether layer was separated. The aqueous layer was acidified with aqueous hydrochloric acid (10%) and extracted with ether. The combined ether layers were washed with water and brine and dried (magnesium sulphate). Removal of the solvent in vacuo gave a colourless oil of 3 -(m-benzyloxyphenyl)propan-1-ol (only one product was indicated by t.l.c.) $(12 \mathrm{~g}, 90 \%)$; $\nu_{\max } 3320$ and $1600 \mathrm{~cm}^{-1} ; \delta 2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.69(2 \mathrm{H}, 2 \times \mathrm{d}$, $\left.\int 6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.61\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.0(1 \mathrm{H}$, br s, OH , exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right)$, and $6.59-$ 7.30 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

To a solution of 3 -(m-benzyloxyphenyl) propan-1-ol (7.5 g) in ether (50 ml) was added phosphorus tribromide (4 ml) slowly and the reaction mixture was stirred at room temperature for 21 h . The mixture was poured into cold saturated sodium hydrogencarbonate solution and the ether layer was separated. The aqueous layer was extracted with ether and the combined ether layers were washed twice with aqueous sodium hydroxide (10%) and dried (magnesium sulphate). After removal of solvent, the residue was distilled to give benzyl bromide (1.9 g), followed by benzyl $3-(3-$ bromopropyl)phenyl ether (5; $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}$) (4.6 g, 45\%) (Found: $\mathrm{C}, 62.9$; $\mathrm{H}, 5.5$; $\mathrm{Br}, 26.1 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrO}$ requires $\mathrm{C}, 63.0 ; \mathrm{H}, 5.6 ; \mathrm{Br}, 26.0 \%) ; \nu_{\max } 1600 \mathrm{~cm}^{-1} ; \delta 2.16(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.37(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{O}\right)$, and $6.70-7.61(9 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$. The sodium hydroxide layers were acidified with aqueous hydrochloric acid (10%) and extracted with ether.

The ether extracts were washed with water and brine and dried (magnesium sulphate). Removal of the solvent in vacuo gave an oil of 3 -(3-bromopropylphenol $(5 ; \mathrm{R}=\mathrm{OH})$ $(2.6 \mathrm{~g}, 36 \%)$; $\nu_{\max .} 3330$ and $1600 \mathrm{~cm}^{-1} ; \delta 2.15(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.73\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.36(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Br}$), and 6.60-7.41 (4 H, m, ArH).

Methylation (potassium carbonate, excess of methyl iodide, acetone, reflux, 12 h) of the bromide ($5 ; \mathrm{R}=\mathrm{OH}$) ($1.6 \mathrm{~g}, 7.44 \mathrm{mmol}$) followed by chromatography on silica gel (30 g) (ether-light petroleum, $2: 3$) gave a colourless oil of 3 -(3-bromopropyl)anisole ($5 ; \mathrm{R}=\mathrm{OMe}$) ($1.5 \mathrm{~g}, 88 \%$) (Found: C, 52.3; H, 5.5; Br, 34.6. Calc. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrO}$: $\mathrm{C}, 52.4 ; \mathrm{H}, 5.7 ; \mathrm{Br}, 34.9 \%)$; $\nu_{\max } 1600 \mathrm{~cm}^{-1} ; \delta 2.15(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.72\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.18(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.68-7.51$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

1-(2-Benzyloxyphenyl)-4-(3-benzyloxyphenyl)butan-1-ol (6i).-To a mixture of magnesium ($161 \mathrm{mg}, 0.0067 \mathrm{~mol}$) and a few crystals of iodine in ether (5 ml) was added ethyl bromide (3 drops) at room temperature. After the reaction had started and progressed for a few minutes, a solution of the bromide ($5 ; \mathrm{R}=\mathrm{OCH}_{2} \mathrm{Ph}$) (2 g, 0.0066 mol) in ether (20 ml) was added dropwise. The addition was completed over a 30 min period and the mixture was allowed to stir for an additional 1 h at room temperature. To the stirring solution was added dropwise a solution of o benzyloxybenzaldehyde ($1.4 \mathrm{~g}, 0.0066 \mathrm{~mol}$) in ether (30 ml) at room temperature. After the addition was completed, the mixture was stirred for an additional 12 h and poured into saturated aqueous ammonium chloricle. This mixture was thoroughly extracted with ether. The ether layers were dried (brine and magnesium sulphate) and evaporated to give an oil. Preparative t.l.c. (ether-light petroleum, $2: 3)$ gave a colourless oil of the alcohol (6i) ($860 \mathrm{mg}, 30 \%$) (Found: $\mathrm{C}, 82.0 ; \mathrm{H}, 6.5 . \quad \mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 82.2 ; \mathrm{H}$, 6.8%) ; $\nu_{\text {max. }} 3360$ and $1600 \mathrm{~cm}^{-1}$; $\delta 1.78\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, $2.40\left(1 \mathrm{H}\right.$, br s, OH, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.56(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2}\right), 4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 5.04$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.60-7.3(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.40(10 \mathrm{H}$, s, PhH).

1-(2-Hydroxyphenyl)-4-(3-hydroxyphenyl)butan-1-ol
(6h).-A solution of the alcohol (6i) ($600 \mathrm{mg}, 1.37 \mathrm{mmol}$) and aqueous sodium hydroxide $[164 \mathrm{mg}, 4.11 \mathrm{mmol}$, in water $(2 \mathrm{ml})$] in methanol $(20 \mathrm{ml})$ containing palladiumcharcoal catalyst ($5 \% ; 240 \mathrm{mg}$) was shaken under hydrogen ($40 \mathrm{lbf} \mathrm{in}^{-2}$) at room temperature for 26 h . After filtration, the methanol was removed in vacuo, ether and water were added, and the mixture was neutralised with aqueous hydrochloric acid (5\%). The ether layer was separated and the aqueous phase was extracted with ethyl acetate. The combined organic layers were dried (brine and magnesium sulphate) and the solvent was removed in vacuo to give an oil. Preparative t.l.c. (ether-light petroleum, l: l) afforded two bands. The band of higher R_{F} gave a mixture of (7c) and (8c) $(159 \mathrm{mg}, 48 \%)$ which were identical (i.r., n.m.r., and t.l.c.) with known samples. The band of lower $R_{\text {F }}$ gave the alcohol (6 h) ($144 \mathrm{mg}, 41 \%$) (Found: $\mathrm{C}, 74.2$; $\mathrm{H}, 6.8$. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 7.0 \%$) ; $v_{\max .} 3300$ and $1590 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 1.72\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, $2.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.90(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.50-7.35(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.51\left(2 \mathrm{H}\right.$, br s, $2 \times \mathrm{OH}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$.

1-(2-Methoxyphenyl)-4-(3-methoxyphenyl)butan-1-ol $(6 \mathrm{j})$. The alcohol $(6 \mathrm{j})$ was prepared from the bromide (5 ; $\mathrm{R}=\mathrm{OMe})(1.4 \mathrm{~g}, 6.1 \mathrm{mmol})$ and o-methoxybenzaldehyde ($830 \mathrm{mg}, 6.1 \mathrm{mmol}$) in a manner similar to that described
for the synthesis of the alcohol (6i). The crude oil was purified by preparative t.l.c. (ether-light petroleum, l:4) to afford the alcohol (6 j) ($561 \mathrm{mg}, 32 \%$) (Found: C, 75.1 ; $\mathrm{H}, 7.4 . \quad \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 7.7 \%$); $\nu_{\text {max. }} 1600$ $\mathrm{cm}^{-1} ; \delta 1.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$), $2.61\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.91(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and $6.65-$ 7.55 ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

1-(4-Hydroxyphenyl)-3-(3-hydroxyphenyl)propan-1-ol
(6k).-To a solution of p-liydroxyacetophenone (2 g, 0.0147 mol) and m-hydroxybenzaldehyde ($1.8 \mathrm{~g}, 0.148$ $\mathrm{mol})$ in ethanol $(95 \%, 10 \mathrm{ml})$ was added aqueous sodium hydroxide $[1.70 \mathrm{~g}, 0.044 \mathrm{~mol}$, in water (10 ml)] and the reaction was heated at $80^{\circ} \mathrm{C}$ for 2 h and allowed to stir at room temperature for 3 d . The cooled mixture was acidified with aqueous hydrochloric acid (10%). The resulting yellow precipitate was recrystallised from aqueous ethanol to give yellow needles of 3,4 -dihydroxychalcone ($4 ; \mathrm{R}^{1}=$ $\mathrm{OH}, \mathrm{R}^{2}=4-\mathrm{OH}$) $\left(2.9 \mathrm{~g}, 82 \%\right.$), m.p. $236-239{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19}$ $237-239^{\circ} \mathrm{C}$) (Found: C, 74.6; H, 5.1. Calc. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{3}$: $\mathrm{C}, 75.0 ; \mathrm{H}, 5.0 \%)$; $\nu_{\text {max. }} 3350$ and $1630 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ 6.71-8.41 (m).

Catalytic hydrogenation of the chalcone $\left(4 ; \mathrm{R}^{\mathbf{1}}=\mathrm{OH}\right.$, $\left.\mathrm{R}^{2}=4-\mathrm{OH}\right)(1.2 \mathrm{~g})$ in ethyl acetate (20 ml) containing Adams catalyst (110 mg) under hydrogen ($40 \mathrm{lbf} \mathrm{in}^{-2}$) for 20 min at room temperature gave an oil by usual work-up. Preparative t.l.c. (ethyl acetate-light petroleum, 2:3) afforded 3,4'-dihydroxy- $\alpha \beta$-dihydrochalcone ($980 \mathrm{mg}, 81 \%$) (Found: $\mathrm{C}, 74.3 ; \mathrm{H}, 5.9 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}$, $5.8 \%)$; $\nu_{\text {max. }} 3350$ and $1650 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 3.10(4 \mathrm{H}$, symmetrical m, $\left.\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 6.65-8.20(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.50\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$.

To a solution of $3,4^{\prime}$-dihydroxy- $\alpha \beta$-dihydrochalcone (800 mg) in ether (50 ml) was added lithium aluminium hydride $(800 \mathrm{mg})$ slowly in small portions and the resulting mixture was allowed to stir at room temperature for 3 h . Work-up in the usual manner gave a pale yellow oil which was purified by preparative t.l.c. (ethyl acetate-light petroleum, l: l) to give white crystals of the alcohol (6 k) $(460 \mathrm{mg}, 57 \%$), m.p. $131-133{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 74.1$; $\mathrm{H}, 6.5 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3}$ requires $\mathrm{C}, 73.8 ; \mathrm{H}, 6.6 \%)$; $\nu_{\text {max. }} 3300$ and $1600 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 2.0\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.71$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.35\left(\mathrm{l} \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $6.61-7.50(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.35(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}$, exchanged with $\mathrm{D}_{2} \mathrm{O}$). Use of higher temperature and a longer reaction time produced many products.

1-(4-Hydroxyphenyl)-3-(3-methoxyphenyl)propan-1-ol
(61) -Condensation of p-hydroxyacetophenone ($3 \mathrm{~g}, 0.022$ mol) and m-methoxybenzaldehyde ($3 \mathrm{~g}, 0.022 \mathrm{~mol}$) in ethanol (95%; 10 ml) with aqueous sodium hydroxide $(2.1 \mathrm{~g}, 0.053 \mathrm{~mol}$, in water 10 ml$)$ as described above for the chalcone (4; $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=4-\mathrm{OH}$), followed by recrystallisation of the crude solid from aqueous ethanol gave yellow crystals of 3 -methoxy-4'-hydroxychalcone $\left(4 ; \quad \mathrm{R}^{1}=\mathrm{OMe}\right.$, $\mathrm{R}^{2}=4-\mathrm{OH}$) $(3.8 \mathrm{~g}, 68 \%)$, m.p. $138-141{ }^{\circ} \mathrm{C}$ (Found: C , 75.6; $\mathrm{H}, 5.4$. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.6 ; \mathrm{H}, 5.5 \%$); $\nu_{\text {max. }} 3300$ and $1630 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 3.90(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $7.10-8.32(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and ArH$)$, and $9.40(1 \mathrm{H}$, br s, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}$).

Catalytic hydrogenation of the above chalcone (1 g) in ethyl acetate (10 ml) containing Adams catalyst (100 mg) as above (10 min) gave an oil of 3 -methoxy-4'-hydroxy- $\alpha \beta$ dihydrochalcone ($910 \mathrm{mg}, 90 \%$); $v_{\text {max }} 3300$ and 1640 cm^{-1}; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 3.20\left(4 \mathrm{H}\right.$, symmetrical $\mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2}-$ $\mathrm{CO}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.60-8.11(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reduction of the above dihydrochalcone (400 mg) in ether (15 ml) with lithium aluminium hydride $(300 \mathrm{mg})$ at room temperature for 3 h gave an oil by usual work-up. Preparative t.l.c. (ethyl acetate-light petroleum, I: l) afforded an oil of the alcohol (61) ($239 \mathrm{mg}, 59 \%$) (Found: $\mathrm{C}, 74.3 ; \mathrm{H}, 6.9 . \quad \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 7.0 \%$); $\nu_{\text {max. }} 3350$ and $1600 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 2.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.60-7.51(8 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 8.10\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$.

3-(3-Hydroxyphenyl)-1-(4-methoxyphenyl)propan-1-ol (6 m).-Condensation of p-methoxyacetophenone (2 g , 0.013 mol) and m-hydroxybenzaldehyde ($1.8 \mathrm{~g}, 0.015 \mathrm{~mol}$) in ethanol (95%; 10 ml) with aqueous sodium hydroxide [$2 \mathrm{~g}, 0.050 \mathrm{~mol}$, in water $(10 \mathrm{ml})]$ at $80^{\circ} \mathrm{C}$ for 2 h and room temperature for 3 d gave a yellow solid after usual work-up. Recrystallisation from aqueous ethanol gave yellow needles of 2-hydroxy-4'-methoxychalcone (4; $\mathrm{R}^{1}=\mathrm{OH} ; \quad \mathrm{R}^{2}=4$ OMe) (2.9 86\%), m.p. $150-153{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19} 162-164{ }^{\circ} \mathrm{C}$) (Found: C, 75.1; H, 5.2. Calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 75.6 ; \mathrm{H}$, $5.5 \%)$; $\nu_{\text {max. }} 3300$ and $1640 \mathrm{~cm}^{-1} ; \delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 3.90(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.90-8.41(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and ArH$)$, and $9.30(1 \mathrm{H}$, br s, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}$).

Catalytic hydrogenation of the above chalcone (2 g) in ethyl acetate (12 ml) containing Adams catalyst (200 mg) as above (3 min) gave an oil (2 g) after usual work-up. Purification of the crude oil (lg) by preparative t.l.c. (etherlight petroleum, 2:3) gave a colourless oil of 3 -hydroxy-4'-methoxy- $\alpha \beta$-dihydrochalcone ($765 \mathrm{mg}, 76 \%$); $\nu_{\text {max }} 3350$ and $1650 \mathrm{~cm}^{-1}$; $\delta 3.15\left(4 \mathrm{H}\right.$, symmetrical $\mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2^{-}}$ $\mathrm{CO}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.70-8.21(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reduction of the above dihydrochalcone (500 mg) in ether (10 ml) with lithium aluminium hydride (300 mg) at room temperature for 3 h followed by usual work-up gave an oil. Preparative t.l.c. (ether-light petroleum, 2:3) afforded a white solid of the alcohol (6 m) ($400 \mathrm{mg}, 79 \%$), m.p. $108-110{ }^{\circ} \mathrm{C}$ (Found: C, 74.2; H, 7.0. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 7.0 \%$); $\nu_{\max } 3330$ and $1600 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 2.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right)$, $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.60-7.60(8 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.31\left(\mathrm{l} \mathrm{H}\right.$, br s, OH , exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$.

1-(4-Methoxyphenyl)-3-(3-methoxyphenyl)propan-1-ol
$(6 n)$.-To a solution of the chalcone $\left(4 ; \mathrm{R}^{1}=\mathrm{OH} ; \mathrm{R}^{2}=4\right.$ OH) ($380 \mathrm{mg}, 1.58 \mathrm{mmol}$) in acetone (10 ml) was added potassium carbonate ($436 \mathrm{mg}, 3.16 \mathrm{mmol}$) and methyl iodide (1 ml) and the reaction mixture heated at reflux for 9 h . Work-up as usual gave a yellow oil of $3,4^{\prime}$-dimethoxychalcone (4; $\left.\mathrm{R}^{1}=\mathrm{OMe} ; \mathrm{R}^{2}=4-\mathrm{OMe}\right)^{20}(390 \mathrm{mg}, 92 \%)$; $\nu_{\text {max. }} 1660 \mathrm{~cm}^{-1} ; \delta 3.85(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$ and $6.95-8.20$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and ArH$)$.

Catalytic hydrogenation of the chalcone (4; $\mathrm{R}^{1}==\mathrm{OMe}$; $\left.\mathrm{R}^{2}=4-\mathrm{OMe}\right)(370 \mathrm{mg})$ in ethyl acetate (5 ml) containing Adams catalyst (39 mg) as above (5 min) gave an oil of 3,4-dimethoxy- $\alpha \beta$-dihydrochalcone ($358 \mathrm{mg}, 96 \%$); $\nu_{\text {max. }} 1670$ cm^{-1}; $\delta 3.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CO}\right), 3.75(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.71-8.10(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reduction of the above dihydrochalcone (350 mg) in ether $(5 \mathrm{ml})$ with lithium aluminium hydride (160 mg) at room temperature for 2 h (the reaction was shown to be complete by t.l.c.) afforded an oil by usual work-up. Preparative t.l.c. (ether-light petroleuni, 2:3) gave a colourless oil of the alcohol (6u) ($314 \mathrm{mg}, 89 \%$) (Found: C, $75.0 ; \mathrm{H}, 7.2$. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$ requires C, $75.0 ; \mathrm{H}, 7.4 \%$); $\nu_{\text {max. }} 3400$ and 1600 $\mathrm{cm}^{-1} ; \delta 2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.80$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and $6.70-7.51(8 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$.

1-(4-Benzyloxyphenyl)-4-(3-benzyloxyphenyl)butan-1-ol $(6 \mathrm{p})$.-The alcohol (6 p) was prepared from the bromide (5; $\mathrm{K}=\mathrm{OCH}_{2} \mathrm{Ph}$) and p-benzyloxybenzaldehyde in a manner similar to that described for the alcohol (6i). Preparative t.l.c. (ether-light petroleum, 2:3) of the crude oil gave the alcohol (6 p) (43%) (Found: C, 81.9; H, 6.4. $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 82.2 ; \mathrm{H}, 6.8 \%$); $\nu_{\text {max. }} 3360$ and $1600 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CCl}_{4}\right) 1.59\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.18(1 \mathrm{H}$, br s, OH , exchanged with $\mathrm{D}_{2} \mathrm{O}$), $2.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right)$, $4.45(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.98\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{Ph}\right), 6.61-7.35$ $(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.40(10 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

1-(4-Hydroxyphenyl)-4-(3-hydroxyphenyl)butan-1-ol (60).-A solution of the alcohol (6 p) ($400 \mathrm{mg}, 0.91 \mathrm{mmol}$) and aqueous sodium hydroxide $[109 \mathrm{mg}, 2.73 \mathrm{mmol}$, in water $(2 \mathrm{ml})$] in methanol (20 ml) was shaken under hydrogen at room temperature for 24 h . Work-up as previously described for the alcohol (6 h) and preparative t.l.c. (etherlight petroleum, 1:1) gave two bands. The band of higher R_{F} gave a mixture of $(7 \mathrm{~g})$ and $(8 \mathrm{~g})(88 \mathrm{mg}, 40 \%)$, identical (i.r., n.m.r., and t.l.c.) with known samples (described below). The band of lower R_{F} afforded the alcohol (6o) ($94 \mathrm{mg}, 40 \%$) (Found: C, 74.2; H, 7.1. $\mathrm{C}_{16}{ }^{-}$ $\mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.4 ; \mathrm{H}, 7.0 \%$); $\nu_{\max } 3300$ and 1600 cm^{-1}; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 1.64\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2}\right), 4.65(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.60-7.51(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.21\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $2 \times \mathrm{OH}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$.

1-(4-Methoxyphenyl)-4-(3-methoxyphenyl)butan-1-ol (6q).-The alcohol (6 q) was prepared from the bromide (5; $\mathrm{R}=\mathrm{OMe}$) and p-methoxybenzaldehyde in a manner similar to that described for the synthesis of the alcohol (6i). Preparative t.l.c. (ether-light petroleum, l:4) gave a colourless oil of the alcohol (6q) (39%) (Found: C, 75.2; $\mathrm{H}, 7.3 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 7.7 \%$); $\nu_{\text {max }} 3400$ and $1600 \mathrm{~cm}^{-1}$; $\delta\left(\mathrm{CCl}_{4}\right) 1.50\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.98(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right)$, $3.59(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.31(\mathrm{lH}$, br s, CH$)$, and $6.41-7.25$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

1-(2-Methoxyphenyl)-3-(3-methoxyphenyl)prop-1-ene (9b).-A solution of the alcohol (6e) (100 mg) in dimethyl sulphoxide (0.8 ml) was heated at $180-190{ }^{\circ} \mathrm{C}$ for 0.5 h . Chloroform was added and the solution was washed several times with water and dried (brine and sodium sulphate). Removal of the solvent in vacuo gave an oil (only one spot was indicated by t.l.c.). Preparative t.l.c. (ether-light petroleum, 2:3) gave the olefin (9b) ($80 \mathrm{mg}, \mathbf{8 6 \%}$) (Found: $\mathrm{C}, 80.1 ; \mathrm{H}, 7.0 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.3 ; \mathrm{H}, 7.1 \%$); $\nu_{\text {max. }} 1620$ and $970 \mathrm{~cm}^{-1}$; $\delta 3.60\left(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, $3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.41-7.71(10 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and ArH).

1-(4-Methoxyphenyl)-3-(3-methoxyphenyl)prop-1-ene (9f).-Similar dehydration of the alcohol (6n) by heating in dimethyl sulphoxide as above followed by preparative t.l.c. (ether-light petroleum, 2:3) gave the olefin (9f) (84\%) (Found: C, $80.0 ; \mathrm{H}, 6.9 . \quad \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.3 ; \mathrm{H}$, $7.1 \%)$; $\nu_{\text {max }} 1620$ and $960 \mathrm{~cm}^{-1}$; $\delta 3.51(2 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 3.80(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 6.40(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$, and $6.70-7.51$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Reactions of Ethylmagnesium Bromide with Alcohols.General method. To a solution of ethylmagnesium bromide (3.0 mmol) [from magnesium (3.0 mmol) and ethyl bromide (3.0 mmol) in ether (5 ml)] was added dropwise to a solution of the alcohol (6) (14 mmol) in ether (5 ml) at room temperature. After the addition was complete, the mixture was allowed to stir for an additional 10 min and the ether was removed in vacuo under nitrogen. Benzene (25 ml) was
added (when 18-crown-6 or ethyl vinyl ether was required; it was dissolved in benzene and added all at once during this period) and the reaction mixture was heated at reflux for 20 h . The cooled mixture was quenched by the addition of saturated aqueous ammonium chloride and extracted with ether. The organic layers were washed with water and brine and dried (magnesium sulphate). Removal of the solvent in vacuo gave an oil.

The alcohol (6a). The Grignard reagent (3.0 mmol) and the alcohol (6 a) ($342 \mathrm{mg}, 1.4 \mathrm{mmol}$) in benzene (25 ml) gave, after work-up, a pale yellow oil. Preparative t.l.c. (etherlight petroleum, $1: 1$) afforded two main bands. The band of higher R_{F} gave 3-(2-hydroxyphenyl)indan-4-ol (7a) ($224 \mathrm{mg}, 71 \%$), m.p. $131-133{ }^{\circ} \mathrm{C}$ (Found: C, 79.2 ; H, 5.9 . $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 79.6; H, 6.2\%) ; $\nu_{\max } 3300$ and 1600 $\mathrm{cm}^{-1} ; \delta 2.10-2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.25(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 4.81(\mathrm{lH}, \mathrm{m}, \mathrm{CH})$, and $6.60-7.51(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$. The band of lower R_{F} gave the olefin (9a) ($35 \mathrm{mg}, 11 \%$); $\nu_{\text {max. }} 3300,1620$, and $960 \mathrm{~cm}^{-1} ; \delta 3.51(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, $\left.\mathrm{ArCH}_{2}\right), 6.30-7.61(10 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}$ and ArH$)$, and 5.70 $(2 \mathrm{H}, \mathrm{brs}, 2 \times \mathrm{OH})$.

Methylation of the cyclised product (7a) (2 mol equiv. potassium carbonate, excess of methyl iodide, acetone, reflux, 24 h) followed by preparative t.l.c. (ether-light petroleum, 1:4) gave 7-methoxy-1-(2-methoxyphenyl)indan (7b) (92\%) (Found: C, 80.1; H, 6.8. $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C , $80.3 ; \mathrm{H}, 7.1 \%) ; \nu_{\max } 1580 \mathrm{~cm}^{-1} ; \delta 1.70-2.61(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.68(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.88(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CH})$, and $6.51-7.50(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methylation of the olefin (9a) as above followed by preparative t.l.c. (ether-light petroleum, 2:3) gave the olefin (9 b) (90%) identical (i.r., n.m.r., and t.l.c.) with the previously prepared specimens.

The alcohol (6 h). Ethylmagnesium bromide (1.5 mmol) and the alcohol (6 h) ($180.6 \mathrm{mg}, 0.70 \mathrm{mmol}$) in benzene $(15 \mathrm{ml})$ gave, after work-up, an oil (only one product was indicated by t.l.c.) which on preparative t.l.c. (ether-light petroleum, 1:1) gave a mixture of the cyclised alcohols (7 c) and (8 c) ($151 \mathrm{mg}, 90 \%$); $\nu_{\text {max }} 3300$ and $1600 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 1.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right)$, $4.69(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and $6.50-7.51(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methylation of the cyclised products (7c) and (8c) as above followed by preparative t.l.c. (ether-light petroleum, 1:4) gave 6- and 8-methoxy-1-(2-methoxyphenyl)-1,2,3,4tetrahydronaphthalene (7d) and (8d) (91\%) (Found: C, $80.2 ; \mathrm{H}, 7.3$. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.6 ; \mathrm{H}, 7.5 \%$); $\nu_{\text {max. }} 1600 \mathrm{~cm}^{-1} ; \delta 1.81\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.85(2 \mathrm{H}, \mathrm{t}$, $\left.J 6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.88(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.68(1 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH})$, and $6.61-7.48(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

The alcohol (6 k). Ethylmagnesium bromide (2.1 mmol) and the alcohol (6 k) ($244 \mathrm{mg}, 1.0 \mathrm{mmol}$) in benzene (20 ml) gave a yellow oil which was separated by preparative t.l.c. (ethyl acetate-light petroleum 1:1) into two components. That of higher R_{F} comprised the cyclised alcohols (7e) and (8 e) $(97 \mathrm{mg}, 43 \%)$; $\nu_{\text {max. }} 3300$ and $1600 \mathrm{~cm}^{-1} ; \delta 2.41(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.91\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.20(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\mathrm{CH}), 6.60-7.41(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.75(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$. The band of lower R_{F} afforded the olefin (9 e) ($4.6 \mathrm{mg}, 2 \%$); $\nu_{\text {max }} 3300,1620$. and $960 \mathrm{~cm}^{-1}$; $\delta\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 3.45\left(2 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 6.41(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH})$, and $6.61-7.51(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methylation of a mixture of (7e) and (8e) as previously described for the cyclised product (7a) followed by preparative t.l.c. (ether-light petroleum, $1: 4$) gave 5 - and 7-methoxy-1-(4-methoxyphenyl)indan (7f) and (8f) (90\%)
(Found: $\mathrm{C}, 80.0 ; \mathrm{H}, 6.9 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.3 ; \mathrm{H}$, $7.1 \%)$; $\nu_{\text {max. }} 1600 \mathrm{~cm}^{-1}$; $\delta 2.11\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.01(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{ArCH}_{2}\right), 3.81\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 4.21(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and 6.70-7.41 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Similar methylation of the olefin (9e) gave the olefin (9f), identical (i.r., n.m.r., and t.l.c.) with the previously prepared sample.

The alcohol (60). Ethylmagnesium bromide (1.92 mmol) and the alcohol (6o) ($232 \mathrm{mg}, 0.90 \mathrm{mmol}$) in benzene (17 ml) gave, after work-up, an oil which was purified by preparative t.l.c. (ethyl acetate-light petroleum, $1: 1$) to give the cyclised products $(7 \mathrm{~g})$ and $(8 \mathrm{~g})(194 \mathrm{mg}, 90 \%)$, methylation of which, as previously described for (7a), followed by preparative t.l.c. (ether-light petroleum, 1:4) gave 6and 8-methoxy-1-(4-methoxyphenyl)-1,2,3,4-tetrahydronaphthalene (7 h) and (8 h) (90%) (Found: C, 80.9; H, 7.7. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{0}$ requires $\left.\mathrm{C}, 80.6 ; \mathrm{H}, 7.5 \%\right)$, $\nu_{\max } 1600 \mathrm{~cm}^{-1}$; $\delta 1.81\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 3.72(6 \mathrm{H}$, $\mathrm{s}, 2 \times \mathrm{OMe}), 3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, and $5.58-7.21(7 \mathrm{H}, \mathrm{m}$, ArH).

Trapping of the o-quinone methide from the alcohol (6f). A solution of the alcohol (6 f) ($180 \mathrm{mg}, 0.79 \mathrm{mmol}$) in ether $(5 \mathrm{ml})$ was treated with ethylmagnesium bromide solution [0.94 mmol , in ether (5 ml)] as described in the general method. The mixture was stirred for 10 min and the ether was removed in vacuo under nitrogen. Benzene (15 ml) was added, followed by ethyl vinyl ether ($100 \mathrm{mg}, 1.39$ mmol) in benzene (2 ml) and the mixture was heated at reflux for 20 h . Work-up as above gave an oil. T.l.c. indicated the absence of the starting alcohol. Preparative t.l.c. (ether-light petroleum, 3:7) afforded 2-ethoxy-4phenethylchroman (18) ($123 \mathrm{mg}, 55 \%$) (Found: C, 80.8; $\mathrm{H}, 8.2$. $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.8 ; \mathrm{H}, 7.9 \%$); $\nu_{\text {max. }} 1600$ $\mathrm{cm}^{-1} ; \delta 1.31\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, $2.91\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right.$ and ArCH$), 3.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 5.0$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}), 7.11(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $7.35(5 \mathrm{H}, \mathrm{s}, \mathrm{PhH})$.
Reactions of Sodium Hydride with Alcohols.-General method. To a solution of the alcohol (1.0 mmol) in ether (6 ml) was added sodium hydride (80% dispersion in mineral oil; 2.2 mmol) under nitrogen. After the mixture had been stirred for 10 min at room temperature, the ether was removed in vacuo. Benzene (20 ml) was added and the solution was treated in a manner similar to that previously described for the reaction of the alcohol with ethylmagnesium bromide.

Attempted n-Butyl-lithium-catalysed Cyclisation of (6a).To a solution of the alcohol (6a) ($244 \mathrm{mg}, 1.0 \mathrm{mmol}$) in ether $(6 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added n -butyl-lithium (1.7 m in hexane, $1.2 \mathrm{ml}, 2.0 \mathrm{mmol}$). The reaction mixture was stirred for 10 min at room temperature and the ether was removed in vacuo. Benzene (20 ml) was added and the mixture was heated at reflux for 20 h . The cooled reaction mixture was quenched by the addition of aqueous ammonium chloride (20%). The solution was extracted with ether and the ethereal solution was dried (brine and magnesium sulphate). Removal of the solvent in vacuo gave a viscous oil. Preparative t.l.c. (ether-light petroleum, l: l) gave a colourless oil ($195 \mathrm{mg}, 80 \%$), identical (i.r., n.m.r., and t.l.c.) with the starting material.

Attempted Sodium Methoxide-catalysed Cyclisation of $(6 \mathrm{k})$.-Sodium metal ($46 \mathrm{mg}, 2.0 \mathrm{mmol}$) was allowed to react with methanol (3 ml) and a solution of the alcohol (6 k) ($244 \mathrm{mg}, 1.0 \mathrm{mmol}$) in methanol (3 ml) was added at room temperature. The mixture was stirred for 10 min and the solvent was removed in vacuo. Benzene (20 ml)
was added and the mixture was heated at reflux for 20 h . Work-up as above, followed by preparative t.l.c. (ether-light petroleum, $1: 1$) gave an oil ($196 \mathrm{mg}, 80 \%$) which was shown to be identical with the starting material (i.r., n.m.r., and t.l.c.).

Stannic Chloride-catalysed Cyclisations of Alcohols.-The alcohol (6a). To a solution of the alcohol (6a) ($500 \mathrm{mg}, 2.05$ $\mathrm{m} m \mathrm{~mol}$) in dichloromethane (50 ml) was added stannic chloride ($5.3 \mathrm{~g}, 20.5 \mathrm{mmol}$). The mixture was stirred at room temperature under nitrogen for 1.5 h and then poured onto ice-water and the organic phase separated. The aqueous layer was extracted with dichloromethane and the combined extracts were dried (brine, magnesium sulphate). Removal of the solvent in vacuo followed by preparative t.l.c. (ether-light petroleum, $\mathbf{1 : 1}$) afforded a mixture of 5- and 7-hydroxy-1-(1-hydroxyphenyl)indan (7a) and (8a) (340 mg, 72\%) (Found: C, 79.5; H, 6.1. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.6 ; \mathrm{H}, 6.2 \%$); $\nu_{\text {max. }} 3300$ and $1600 \mathrm{~cm}^{-1}$; $\delta 2.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.91\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.20$ $(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{ArCH}), 6.60-7.41(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and 7.75 $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OH}\right.$, exchanged with $\left.\mathrm{D}_{2} \mathrm{O}\right)$.
Methylation (2 mol equiv. of potassium carbonate, excess of methyl iodide, acetone, reflux, 24 h) of the above cyclised products $(7 a+7 b)(140 \mathrm{mg})$ followed by preparative t.l.c. (ether-light petroleum, l:4) afforded a mixture of the dimethyl ethers (7b) and (8b) ($144 \mathrm{mg}, 92 \%$) (Found: C, 80.5; $\mathrm{H}, 7.0$. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.3 ; \mathrm{H}, 7.1 \%$); $\nu_{\text {max. }} 1600$ $\mathrm{cm}^{-1} ; \delta 2.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.01\left(2 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right)$, 3.81 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 3.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 4.81 ($1 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}$, $\mathrm{ArCH})$, and $6.50-7.51(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

The alcohol (6e). Similar cyclisation of the alcohol (6e) $(250 \mathrm{mg}, 0.92 \mathrm{mmol})$ in dichloromethane (20 ml) with stannic chloride ($2.4 \mathrm{~g}, 9.2 \mathrm{mmol}$) at room temperature for 1.5 h followed by preparative t.l.c. (ether-light petroleun, $1: 4)$ of the crude product gave a mixture of (7b) and (8b) ($177 \mathrm{mg}, 76 \%$), identical (i.r., n.m.r., t.l.c., and g.l.c.) with the above known sample.

The alcohol (6j). Similar treatment of the alcohol (6j) ($160 \mathrm{mg}, 0.56 \mathrm{mmol}$) in dichloromethane (20 ml) with stannic chloride ($1.46 \mathrm{~g}, 5.60 \mathrm{mmol}$) gave an oil by usual work-up. Preparative t.l.c. (ether-light petroleum, l:4) afforded a colourless oil which solidified on standing to afford the desired products (7 d) and (8 d) ($105 \mathrm{mg}, 70 \%$), m.p. 63$66{ }^{\circ} \mathrm{C}$, identical (i.r., n.m.r., t.l.c., and g.l.c.) with the above known sample.

The alcohol (6n). Similar treatment of the alcohol (6n) $(150 \mathrm{mg}, 5.5 \mathrm{mmol})$ in dichloromethane (20 ml) with stannic chloride ($1.43 \mathrm{~g}, 0.55 \mathrm{mmol}$) followed by preparative t.l.c.-(ether-light petroleum, $1: 4$) of the crude oil gave a mixture of (7 f) and (8 f) ($100 \mathrm{mg}, 71 \%$), identical (i.r., n.m.r., t.l.c., and g.l.c.) with the above sample.

The alcohol $(6 \mathrm{q})$. In a manner similar to that described for the reaction of the alcohol (6 j), the alcohol (6 q) (160 mg , 0.56 mmol) was cyclised to give a mixture of (7 h) and (8 h) ($106.5 \mathrm{mg}, \mathbf{7 1} \%$), identical (i.r., n.m.r., t.l.c., and g.l.c.) with the above sample.
[9/1525 Received, 25th September, 1979]

REFERENCES

${ }^{1}$ Part 4, W. S. Murphy and S. Wattanasin, preceding paper.
${ }^{2}$ Preliminary communication, W. S. Murphy and S. Wattanasin, J.C.S. Chem. Comm., 1979, 788.
${ }_{3}$ See for example (a) W. S. Johnson, Organic Reactions, 1947, 2, 114; (b) B. Capon, Quart. Rev., 1964, 45; (c) L. R. C. Barclay in G. Olah, ed., 'Friedel Craft and Related Reactions,' Vol. 2,

Part 2, Interscience, New York, 1964, pp. 785-952; (d) P. G. Duggan and W. S. Murphy, J.C.S. Perkin II, 1975, 1054; (e) S. V. Kessar, Accounts Chem. Res., 1978, 11, 283.
${ }^{4}$ See e.g. W. J. Gensler, C. M. Samour, S. Y. Wang, and F. Johnson, J. Amer. Chem. Soc., 1960, 82, 1714, and references therein; F. Suzuki, S. Trenbeath, R. D. Gleim, and C. J. Sih, J. Amer. Chem. Soc., 1978, 100, 2272, and references therein.
G. Casiraghi, G. Casnati, M. Cornia, A. Pochini, G. Sartori, and R. Ungaro, J.C.S. Perkin I, 1978, 322.

6 J. A. Hemingson, J.C.S. Perkin $I I, 1977,616$; G. Leary, I. J. Miller, W. Thomas, and A. D. Woolhouse, ibid., p. 1737.

7 J. E. Baldwin, J.C.S. Chem. Comm., 1976, 734.
${ }^{8}$ G. Casiraghi, G. Casnati, M. Cornia, A. Pochini, G. Puglia, G. Sartori, and R. Ungaro, J.C.S. Perkin I, 1978, 318.
${ }_{9}$ W. S. Murphy and S. Wattanasin, in preparation.
10 G. Casiragni, G. Casnati, G. Puglia, G. Sartori, and G. Terenghi, J. Chem. Research, 1977, (S) 96; (M) 1123.

11 A. Pochini and R. Ungaro, J.C.S. Chem. Comm., 1976, 309; D. A. Bolon, J. Org. Chem., 1970, 35, 3666.
${ }_{12}$ G. F. Luteri and W. T. Ford, J. Organometallic Chem., 1976, 139.
${ }^{13}$ J. Gierer and I. Pettersson, Canad J. Chem., 1977, 55, 593.
14 R. Heck and S. Winstein, J. Amer. Chem. Soc., 1957, 79, 3114.
${ }_{15}$ K. G. Rutherford and M. S. Newinan, J. Amer. Chem. Soc.. 1957, 79, 213.
${ }^{16}$ E. Schraufstötter and S. Deutsch, Chem. Ber., 1948, 81, 489.

17 A. Gutzeit and S. V. Kostanecki, Chem. Ber., 1905, 38, 933.
18 H. S. Mahal and K. Venkataraman, J. Chem. Soc., 1933, 616.
19 J. F. Miguel, Bull. Soc. chim. France, 1961, 1369.
20 B. J. F. Hudson, J. Chem. Soc., 1946, 754.

